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Abstract
Recent efforts have achieved remarkable progress
on single image deraining on the stationary dis-
tributed data. However, catastrophic forgetting
raises practical concerns when applying these
methods to real applications, where the data dis-
tributions change constantly. In this paper, we
investigate the continual learning issue for rain
removal and develop a novel efficient continual
learned deraining transformer. Different from
the typical replay or regularization-based meth-
ods that increase overall training time or parame-
ter space, our method relies on compact prompts
which are small learnable parameters, to main-
tain both task-invariant and task-specific knowl-
edge. Our prompts are applied at both image
and feature levels to leverage effectively trans-
ferred knowledge of images and features among
different tasks. We conduct comprehensive exper-
iments under widely-used rain removal datasets,
where our proposed dual prompt learning con-
sistently outperforms prior state-of-the-art meth-
ods. Moreover, we observe that, even though
our method is designed for continual learning, it
still achieves superior results on the stationary dis-
tributed data, which further demonstrates the effec-
tiveness of our method. Our website is available at:
http://liuminghao.com.cn/DPL/.

1 Introduction
As one of the most common weather degradation, rain streaks
heavily reduce visibility and corrupt the information captured
by images, impacting both human visual experience and com-
puter vision algorithms like detection [Carion et al., 2020],
segmentation [Chen et al., 2018], and depth estimation [Wang
et al., 2020], which is closely related to many practical ap-
plications, e.g., autonomous navigation and surveillance sys-
tems.

In recent years, remarkable progress has been achieved in
single image deraining, especially for deep learning based
methods. Many methods built on convolutional networks [Fu

∗Corresponding Author.

Dataset N
Train Model N

Model N-1

Transfer

(a) PIGWM framework (b) PIGWM result

Dataset N
Train

Prompt
Pool

Model N

Query Instruct

(c) DPL framework (d) DPL result

Figure 1: The comparison between the traditional continual learn-
ing method and our method. (a) Parameter regularization frame-
work, e.g., PIGWM. [Zhou et al., 2021] (b) Result of PIGWM
(PSNR/SSIM: 21.47 dB/0.6792). (c) Overview of our Dual Prompt
Learning (DPL) framework. The DPL framework only utilizes a
single model and prompt pools to store task-specific knowledge as
prompts, i.e., learnable parameters, as the past memory. DPL se-
lectively updates prompts in an instance-wise manner, which are
optimized to guide model prediction and explicitly manage task-
invariant and task-specific knowledge while preserving model plas-
ticity. (d) Result of DPL (PSNR/SSIM: 27.79 dB/0.8240).

et al., 2017; Ren et al., 2019; Zamir et al., 2021] continue
to break new ground in performance. Recently, transformer-
based methods [Valanarasu et al., 2022] have achieved ex-
cellent results. However, rain degradation is complex and
diverse, and most existing models only learn fixed mappings
between paired rainy and clean images. As a result, deep neu-
ral networks may lose previously acquired knowledge and ex-
perience performance decline when faced with changing data
distributions, limiting their real-world applicability.

To alleviate this issue, continual learning methods are de-
veloped to overcome catastrophic forgetting. They can be
mainly divided into three categories: parameter isolation-
based methods [Zhang et al., 2020; Mallya et al., 2018;
Xu and Zhu, 2018], replay-based mechanisms [Zhao et al.,
2021; Kirkpatrick et al., 2017; Pascanu and Bengio, 2013;
Aljundi et al., 2018], and regularization-based methods [Li
and Hoiem, 2017; Zenke et al., 2017]. However, parame-
ter isolation and replay-based methods are computationally
expensive, while regularization-based methods become inef-
ficient and the parameters increase linearly as tasks increase.
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In addition, all three kinds of methods fail to automatically
select relevant knowledge components for arbitrary samples
without knowing their task identity, which is a tremendous
limitation in real applications.

Lately, researchers have drawn inspiration from recent
advances in prompt-based learning (prompting) [Liu et
al., 2021], which reformulates learning tasks by designing
prompts [Raffel et al., 2020] instead of directly adapting
model weights. Prompts encode the knowledge specifically
related to a particular task and allow for more efficient use of
a pre-trained frozen model than fine-tuning, which provides
an ideal mechanism [Wang et al., 2022] for continual learn-
ing.

In this paper, we propose a novel continual learning
scheme for single image deraining called Dual Prompt Learn-
ing (DPL), which is orthogonal to existing replay-based and
regularization-based methods. Fig. 1 demonstrates its effec-
tiveness. It does not need to know the task identity or bound-
aries, therefore more applicable to real scenarios. Its objec-
tive is to learn to select and update compact prompts, i.e.,
small learnable parameters, to instruct the transformer-based
rain removal model to maintain both task-invariant and task-
specific knowledge. In detail, a subset of prompts are selected
from the image/feature prompt pools based on our proposed
instance-wise query mechanism and are concatenated with
input image/embedded tokens for further processing. These
prompts applied at both image and feature levels effectively
leverage transferred knowledge of these two levels jointly.
Furthermore, a regularization technique is further adopted to
penalize the intense changes of important parameters jointly
with the learned prompts.

In summary, our work has the following contributions:
• We propose a novel prompt learning-based continual

learning (CL) scheme to handle different types of rain
streaks with a single model. To the best of our knowl-
edge, it is the first time to apply this new kind of CL
method for low-level vision, which leads to superior per-
formance on various benchmarks.

• We develop a dual prompt learning method for derain-
ing, where prompts are applied at both image and fea-
ture levels to leverage effectively transferred knowledge
of images and features jointly.

• Our DPL is further augmented by parameter regulariza-
tion. The joint regularization of model parameters and
learnable prompts obviously further improves the per-
formance.

• Even though our method is designed for the contin-
ual learning scenario, it achieves competitive results
against state-of-the-art methods on the stationary dis-
tributed data.

2 Related Work
2.1 Single Image Rain Removal
Recently, there have been several methods that have achieved
significant progress in single image rain removal. Yang et
al. [Yang et al., 2017], and Fu et al. [Fu et al., 2017] proposed
the first framework on the rain streak removal. In [Yang et

al., 2017], the rain streak detection and removal are modeled
in the multi-task manner. In [Fu et al., 2017], the residual
learning is applied for rain removal. Later works are pro-
posed with more complex architectures to improve rain re-
moval performance, including joint rain density estimation
and deraining [Ren et al., 2019], non-local operation-based
encoder-decoder network [Li et al., 2018a], multi-stage net-
work [Zhang and Patel, 2018], conditional generative adver-
sarial network [Zhang et al., 2019], and deep convolutional
and recurrent neural network [Li et al., 2018b] that removes
rain streaks stage by stage, etc. Recently, transformer-based
approaches [Valanarasu et al., 2022] have been explored for
weather removal tasks, demonstrating their superior perfor-
mance compared to convolutional networks. However, all the
mentioned deep learning-based methods suffer from catas-
trophic forgetting issue, failing to maintain their effectiveness
when applied to different types of rainy datasets/tasks in real
applications. Comparatively, our work explores the continual
learning approach for image rain removal to adapt the model
to a series of rain streaks.

2.2 Continual Learning
A large amount of research in continual learning follows a
learning paradigm that involves continuously adapting the
model weights, either partially or fully, as the data distri-
bution changes [De Lange et al., 2021; Mai et al., 2022].
These approaches focus on preserving previous knowledge
while also adapting to shifting data. The methods of over-
coming catastrophic forgetting can be mainly divided into
three categories: replay-based mechanisms [Zhao et al.,
2021; Kirkpatrick et al., 2017; Pascanu and Bengio, 2013;
Aljundi et al., 2018], regularization-based methods [Li and
Hoiem, 2017; Zenke et al., 2017], and parameter isolation-
based methods [Zhang et al., 2020; Mallya et al., 2018;
Xu and Zhu, 2018]. In detail, replay-based and parameter
isolation-based methods are computationally expensive since
they require recording the old tasks’ targets and computing
old tasks’ forward pass process for each novel data sample.
Regularization-based methods are cost-effective. The rep-
resentative form of the classic regularization-based method
is Elastic Weight Consolidation (EWC) [Kirkpatrick et al.,
2017], which quantifies how essential each parameter is for a
task with the diagonal of the Fisher information matrix[Pas-
canu and Bengio, 2013] and protects critical weights with
an additional regularization to restrict their movement when
updating for the new job. Further, memory-aware synapses
(MAS) [Aljundi et al., 2018] compute the parameter impor-
tance based on how sensitive the predicted output function is
to a change in this parameter, and penalize changed essen-
tial parameters. Zhou et al. [Zhou et al., 2021] proposed
a first and second-order parameter importance to jointly es-
timate the status of one parameter. In this paper, we pro-
pose a novel continual learning scheme for single image de-
raining, which is orthogonal to existing replay-based and
regularization-based methods.

2.3 Prompting for Transfer Learning
Prompting is applying a function to modify the input so
that a model gets additional information about the task.
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However, the design of a prompting function is challeng-
ing and requires heuristics. Recent works in NLP, includ-
ing prompt tuning [Lester et al., 2021] and prefix tuning [Li
and Liang, 2021], seek to address this issue by applying
learnable prompts in a continuous space, achieving excellent
performance for transfer learning. Prompts capture dataset-
specific knowledge with much smaller additional parameters
than its competitors, such as Adapter [Pfeiffer et al., 2020]
and LoRA [Hu et al., 2021], which achieve remarkable per-
formance in many downstream tasks. Prompt techniques have
acted out fantastic value for transfer learning. Recently, Wang
et al. [Wang et al., 2022] revealed its significance to contin-
ual learning problems. In our work, prompt learning is intro-
duced to construct a continual rain removal method.

3 Dual Prompt Learning for Continual Rain
Removal

Prompt learning is a recent popular technique for transfer
learning and model adaptation. It uses task-specific prompt
functions, which improves sequential modeling capacity for
continuous feature learning. In this paper, we propose to uti-
lize two-level prompt pools that lead to superior performance
even without knowing task identities, as shown in Fig. 2. In-
stead of using the naive way of prompt learning that relies
on task identities and lacks the flexibility to distinguish task-
independent/relevant knowledge, the prompt pools enable an
online search for the prompts to share the knowledge when
tasks are similar and maintain independent knowledge other-
wise. This prompt learning based on prompt pools is applied
at both image and feature levels, to jointly leverage trans-
ferred knowledge of two stages.

3.1 Definition and Formulation
We define a sequence of T de-raining tasks as D =
{D1, · · · , DT } where the t-th task Dt = {(xt

i, y
t
i)}

nt

i=1 con-
tains nt pairs of samples, where each pair consists of a
rainy image xt

i ∈ X and its clean corresponding background
yti ∈ Y . Our goal is to train a model f (·|θmodel) : X → Y
parameterized by θmodel, where X is the rain images domain
and Y is the corresponding clean images domain. However,
the data of D1, D2, · · · , Dn is not available when training
Dn+1.

Given the input image x ∈ RC×H×W where C is the chan-
nel number, and H ×W is the size of the image. We build a
transformer-based deraining backbone f = fr ◦ fe, where fe
is the input embedding layer, and fr represents a stack of self-
attention layers and the subsequent rain removal network.

3.2 Image-Level Prompt-Based Learning
To alleviate the deficiency of linear growth of space expendi-
ture caused by the replay mechanism, and transfer the image-
level prior knowledge among different tasks effectively, we
integrate image-level prompt learning into our proposed con-
tinual learning model. An image prompt pool is defined as
P = {P1, · · · , PM} containing a certain amount of trainable
prompts Pi = (Ki, Vi) where value Vi ∈ RC×H×W is a
representation with the same size as the input image, and key
Ki = fe (Vi) is the embedded value to match the key of input.

Following the notations in Sec. 3.1, x and xe = fe (x) are the
input and its corresponding embedding feature, respectively.
Note that we omit the task index t of x in our notation as
our method is general enough to be applied even without the
task identity. Ideally, the input x instance itself decides which
prompts to be chosen through matching. To this end, we uti-
lize a distance-measuring function γ to measure the similarity
of a prompt and the input image. We directly take γ as cosine
distance, which is proven as a good choice empirically [Wang
et al., 2022]. During the training of task n, we maintain a
prompt frequency table Qn = [qn1 , q

n
2 , · · · , qnM ], where each

entry represents the normalized frequency of prompt Pi be-
ing selected in task n. As the feature includes richer semantic
information, the similarity is calculated at the feature level to
better reflect more intrinsic information instead of the pixel
level. During the training of task n, given an input x, we
lookup the top-N prompts by simply solving the following
objective:

Px = argmin
{si}N

i=1⊆[1,M ]

N∑
i=1

γ (Ksi , fe (x)) · qnsi , (1)

where Px represents the subset of top-N prompts selected
specifically for x from P , and the prompt frequency table ac-
tually encourages the choice of diversified prompts, which
will be removed during the testing process.

After selection, we concatenate the top-N prompts with
the input along the channel dimension and put them into the
embedding layer together. These prompts have the same size
as the input and thus they can jointly encode knowledge with
the input in model training.

x1 = [Vs1 ;Vs2 ; · · · ;VsN ;x], (2)

where [; ] represents concatenation along the channel dimen-
sion.

3.3 Feature-Level Prompt-Based Learning
Given the input x, and the transformer-based model f =
fr ◦ fe. The embedding layer fe : RC×H×W → RL×D

projects the patched image to the embedding feature xe =
fe (x) ∈ RL×D where L is the length of a token and D is the
embedding dimension. At the feature level, we also maintain
a set of prompts P ′ = {P ′

1, P
′
2, · · · , P ′

M} containing a certain
amount of prompts P ′

i = (K ′
i, V

′
i ) where K ′

i = V ′
i ∈ RL×D,

for i = 1, 2, · · · ,M , and its corresponding prompt frequency
table for task n, Q′

n = [qn1
′, qn2

′, · · · , qnM ′], where each entry
represents the normalized frequency of prompt P ′

i being se-
lected in task n. Similar to Sec. 3.2, we denote γ as a cosine
distance function to score the match between xe = fe (x) and
prompts P ′

1, P
′
2, · · · , P ′

M . In other words, during task n, we
lookup the top-N prompts by simply solving the following
objective:

P ′
x = argmin

{s′i}N

i=1
⊆[1,M ]

N∑
i=1

γ
(
K ′

s′i
, fe (x)

)
· qns′i

′, (3)

where {s′1, s′2, · · · , s′N} is a subset of N indices from [1,M ],
and we can then adapt the input embedding as follows:

x2 = [V ′
s′1
;V ′

s′2
; · · · ;V ′

s′N
; fe (x1)], 1 ≤ N ≤ M, (4)
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Figure 2: The framework of our proposed dual prompt learning for single image rain removal. (a) The training process. (b) The framework for
Task t. (c) Details of the prompt pools. First, the input adaptively selects top-N image prompts by measuring the similarity of a prompt and
the input image. After selecting, the top-N prompts and the input are concatenated along the channel dimension and fed into the embedding
layer together. Similarly, a subset of prompts from the feature prompt pool based on our proposed instance-wise query mechanism is selected
and concatenated with embedded tokens along the token length dimension for further training. The objective is to learn to select and update
prompts to instruct the transformer-based rain removal model.

where [; ] represents concatenation along the token length di-
mension. In Eqn. (4), x1 represents the synthesized input in
Sec. 3.2, and note that when selecting these top-N prompts,
we use x, but during training, we concatenate these prompts
with x1 = [Vs1 ;Vs2 ; · · · ;VsN ;x]. After concatenation, x2

is put into the subsequent rain-removal network for further
training. As in Sec. 3.2, these prompts are also trainable.

3.4 Joint Regularization of Parameters and
Prompts

When the neural network is trained on Task n and Task
n + 1 sequentially, we hope the network can still maintain
the performance of Task n. Thus, the regularization is im-
posed on the model parameters and prompts jointly. On
Task n, the rain removal model’s parameters are denoted as
θnmodel = {θn1 , θn2 , · · · , θnr } where r is the depth of the net-
work, and the parameter set of the overall prompts is denoted
as θnprompt = {θ′n1 , θ′n2 , · · · , θ′ns }, where s is the total quan-
tity of all parameters pertained to these prompts. We signify
θn = θnmodel ∪ θnprompt. For the sake of convenience, we im-
ply θn =

{
θn1 , θ

n
2 , · · · , θnr+s

}
. Xn and Y n indicate the rain

images set and the clean images set on Task n, respectively.
Suppose (x, y) is a rainy/clean image pair. When it is fed
into the network, the degradation of performance on Task n
introduced by the training of network on Task n + 1 can be
evaluated as:

∆f(θn+1,θn, x, y) = Dist
(
f (x, θn) , f

(
x, θn+1

))
≜

∣∣l (f (x, θn) , y)− l
(
f
(
x, θn+1

)
, y
)∣∣ , (5)

where |·| denotes the absolute value operator, l represents the
weighted average of the perceptual loss, L1 loss, and prompt

distance loss used for training the de-raining network. For the
k-th depth parameter on Task n, θnk , we denote

δθnk = θn+1
k − θnk , (6)

To evaluate ∆f
(
θn+1, θn, x, y

)
, we take the Taylor expan-

sion of l (f (x, θ) , y) at point θn+1
k , which is an infinite sum

of terms that are expressed in the form of target functions
derivatives at a single point:

l
(
f
(
x, θn+1

k

)
, y
)
= l (f (x, θnk ) , y) +

(
∇θn

k
l
)T · δθnk

+
1

2
(δθnk )

T ·H · (δθnk )

+O
∥∥∥(δθnk )3∥∥∥ ,

(7)

where H = ∇2
θn
k
l (θnk , x) denotes Hessian matrix for θnk . In

the actual calculation, we abandon the items more than three
times. Therefore we have:

I
(
θn+1

)
= ∆f

(
θn+1, θn, x, y

)
=

r+s∑
k=1

[
l
(
f
(
x, θn+1

k

)
, y
)
− l (f (x, θnk ) , y)

]
=

r+s∑
k=1

[(
∇θn

k
l
)T · δθnk +

1

2
(δθnk )

T ·H · (δθnk )
]
,

(8)

A small I
(
θn+1

)
leads to more preservation of the knowl-

edge of Task n and can be adopted as an effective regulariza-
tion when training on Task n+ 1.
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3.5 Optimization Objective Function
At every training step, after selecting N image prompts fol-
lowing the aforementioned objective. The joint input x1 is fed
into the embedding layer. After that, N feature prompts are
selected and concatenated. The adapted embedding feature
x2 is fed into the subsequent layers. Additionally, the prompt
distance penalty and the penalty of parameters and prompts
are also put into the optimization objective. Overall, on Task
n, we seek to minimize the end-to-end training loss function:

Lx = min
P,P′,θ

αL1 (f (x) , y) + βLp (f (x) , y)

+ ζ
∑
Px

γ (fe (Psi) , fe (x)) · qnsi

+ η
∑
P′

x

γ
(
P ′
s′i
, fe (x)

)
· qns′i

′ + ωI (θn) .

(9)

where L1 and Lp represents smooth L1 loss and perceptual
loss, respectively. The third and fourth items are surrogate
losses to pull selected prompts closer to the corresponding
query features and the fifth item is the parameter penalty
aforementioned in Eqn. (8). α, β, ζ, η, ω are parameters that
control the importance of each term.

3.6 Learning of Prompt Pools
For each task, P and P ′ are initialized randomly. In detail, for
a Pi = (Ki, Vi) , 1 ≤ i ≤ M , Vi is randomly initialized and
has the same size as the input image, and Ki is calculated by
Ki = fe (Vi), where fe is the embedding layer of a particular
model. Similarly, for a P ′

i = (K ′
i, V

′
i ) , 1 ≤ i ≤ M , V ′

i is
also randomly initialized and has the same size as the token,
and K ′

i = V ′
i is the same as V ′

i . During each training epoch,
after we draw a mini-batch B = {(xt

i, y
t
i)}

l
i=1, where l is the

batch size, two sets of chosen prompts PB ,P ′
B are respec-

tively maintained for the dual prompt pools. Initially, they are
both empty sets. For each pair of rainy/clean images, (x, y) in
B, top-N image prompts Px and top-N feature prompts P ′

x
are obtained by solving Eqn. (1) and Eqn. (3). We update the
sets of chosen prompts by PB = PB ∪ Px, P ′

B = P ′
B ∪ P ′

x,
and update Qt and Q′

t by adding 1 to the frequency-items
corresponding to the selected prompts. Then, we calculate
the sample loss Lx of every input in the mini-batch by Eqn.
(9). We calculate per batch loss LB by accumulating Lx, and
we update the parameters in P and P ′ by back-propagation
immediately. In other words, P and P ′ are updated once for
each epoch. The whole process of our proposed DPL for con-
tinual rain removal is summarized in Algorithm 1.

4 Experiment Results
In order to fully evaluate the capabilities of our proposed con-
tinual learning scheme, we integrate it with a state-of-the-art
rain removal baseline TransWeather [Valanarasu et al., 2022].
Through extensive experimentation on several widely-used
rain removal datasets, our DPL method consistently demon-
strates superior performance in comparison to other existing
continual learning methods. In particular, the results of all
experiments indicate that our method performs excellently in
both the capacities to adapt to new tasks and maintain high
performance on previous ones.

Algorithm 1 Dual Prompt Learning
Require: DataSet D = {D1, D2, · · · , DT },where Di includes an
amount of pairs of rainy/clean images{(xi, yi)}Li=1 and T is the
number of tasks.
Parameter: Network f and overall prompts P,P ′parameterized
by θ, image-level prompt pool P = {P1, · · · , PM}, feature-level
prompt pool P ′ = {P ′

1, P
′
2, · · · , P ′

M}, where Pi = (Ki, Vi) , P
′
i =

(K′
i, V

′
i ), for 1 ≤ i ≤ M . Maintained frequency set Qt =

[qt1, q
t
2, · · · , qtM ], F ′

t = [qt1
′, qt2

′, · · · , qtM ′] for the t-th task, number
of training epochs of the t-th task Et, 1 ≤ t ≤ T , learning rate r,
hyperparameters of loss function α, β, ζ, η, ω.
Begin
1: Load the pre-trained VGG-16 model, and get D =

{D1, D2, · · · , DT }.
2: for t = 1, 2, · · · , T do
3: Initialize Qt and Q′

t with real number 1. Initialize P and P ′

with random prompt-sized items.
4: for e = 1, 2, · · · , Et do
5: Draw a mini-batch B =

{(
xt
i, y

t
i

)}l

i=1
. Initialize the sets

of chosen prompts for this batch: PB = {}, P ′
B = {}.

6: for (x, y) in B do
7: Calculate the embedding input xe = fe (x).
8: Lookup top-N image prompts by solving Eqn. (1).
9: Prepending x1 with corresponding top-N prompts by

x1 = [Vs1 ;Vs2 ; · · · ;VsN ;x].
10: Calculate the embedding input fe (x1).
11: Lookup top-N feature prompts by solving Eqn. (3).
12: Prepending x2 with corresponding top-N prompts by

x2 = [V ′
s′1
;V ′

s′2
; · · · ;V ′

s′
N
; fe (x1)].

13: Calculate the rain-free result f(x) = fr(x2).
14: Calculate per sample loss by solving Eqn. (9).
15: Update sets of chosen prompts: PB = PB ∪ Px.
16: Update sets of chosen prompts: P ′

B = P ′
B ∪ P ′

x.
17: Update Qt and Q′

t by adding 1 to the frequency-items
corresponding to the selected prompts.

18: end for
19: Calculate per batch loss LB by accumulating Lx.
20: Update P and P ′.
21: end for
22: Update θ.
23: end for=0
End

4.1 Dataset and Performance Metrics

We evaluate our proposed continual learning scheme
on three widely-used rain removal datasets, including
Rain100H [Yang et al., 2019], Rain100L [Yang et al., 2019],
and Rain800 [Zhang et al., 2019]. In detail, the model
is trained on Rain800 (Task 1) and Rain100H (Task 2) se-
quentially, denoted as Rain800-Rain100H. In addition to the
continual task sequence Rain800-Rain100H, we further ex-
periment with continual task sequences Rain800-Rain100L.
Both Rain100H and Rain100L consist of 1,800 rainy/clean
image pairs for training and 100 pairs for testing while
Rain800 possesses 600 training samples and 200 testing
images. Peak-Signal-to-Noise Ratio (PSNR) and Structure
SIMilarity (SSIM) [Wang et al., 2004] are employed for eval-
uating the model performance.
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(a) Input (b) Task0 (c) SI Task1 (d) Replay Task1 (e) PIGWM Task1 (f) DPL Task1 (g) GT

Figure 3: Visual comparison of rain streak removal results generated from the continual learning process using baseline. (a) Input: rainy
images from Rain800; (b) Task 0: train and test on Rain800; (c) Task 1 with SI: train on Rain800-Rain100H sequentially and independently
(SI) and test on Rain800; (d) Task 1 with replay: train on Rain800-Rain100H sequentially with rehearsal and test on Rain800; (e) Task 1
with PIGWM: train on Rain800-Rain100H sequentially with parameter regularization and test on Rain800; (f) Task 1 with DPL: train on
Rain800-Rain100H sequentially with dual prompt learning and test on Rain800; (g) GT: clean image.

Replay Parameter
Reg. (PR)

Dual
Prompt (DP) DP + PR

Performance (PSNR) 22.76 22.48 22.96 24.39

Increased Parameter
Ratio

100% +
4%× tasks 100% 5.2% 105.2%

Table 1: The comparison of performance and additional increased
parameter complexity of the continual learning methods.

Methods
Training on Rain800-Rain100H

PSNR SSIM Degradation
on Rain800

Baseline
(only Rain800) 26.63 0.8583 0, 0

Ours
(only Rain800) 27.52 0.8667 -0.89, -0.0084

SI 19.87 0.6451 6.76, 0.2132
EWC 21.64 0.7962 4.99, 0.0621

Replay 22.76 0.8136 3.87, 0.0447
Deep generative 22.51 0.8162 4.12, 0.0421

PIGWM 22.48 0.8058 4.15, 0.0525
Ours 24.39 0.8365 2.24, 0.0218

Table 2: Comparison of quantitative results in terms of PSNR
and SSIM. The models are trained sequentially on task sequence
Rain800-Rain100H using continual learning methods. The base-
line is trained on Rain800 solely. All the experiments are tested
on Rain800.

4.2 Training Details
For a fair comparison, all the parameters setting and training
techniques of the baseline model keep consistent with experi-
ments in the original papers. Furthermore, we design distance
query function γ as cosine distance. For both prompt pools,
we assign M to 100, and N to 18, since the mini-batch size
is 18. In terns of the hyperparameters, we assign α to 1, β to
0.04, ω to 0.95, and ζ, η are both assigned to 1e−5. For each
task, we train for 50 epochs.

4.3 Results on Benchmark Datasets
To demonstrate the effectiveness of our proposed continual
learning algorithm, we conduct both qualitative and quantita-
tive experiments on the above datasets and performance mea-
sures. Table 2 and Table 3 report the comprehensive compar-
ison among the baselines, classic continual learning methods,
and our method, which indicates that our method can bet-
ter mitigate catastrophic forgetting on multiple datasets. Sur-
prisingly, Table 2 shows that DPL also achieves competitive
results against the baseline method even on a single dataset
without applying it to continual learning (PSNR/SSIM: 27.52
dB/0.8667), which further demonstrates the rationality of our
method design. Table 4 clearly demonstrates the effectiveness
of our method in not only maintaining consistently excellent
performance in the previous task but also in achieving satis-
factory results in a new task. That is, our method effectively
balances the capacity to adapt to new tasks while simulta-
neously preserving its performance on established ones. As
shown in Table 1, dual prompts offer lower parameter com-
plexity compared to traditional continual learning methods,
adding only 5.2% extra parameters. By applying parameter
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(a) (b) (c) (d) (e) (f)

Figure 4: Ablation study results of sequential training on Rain800-Rain100H and testing on Rain800. (a) All components are applied; (b) No
Image Prompts; (c) No Feature Prompts; (d) No Parameter Regularization; (e) No Prompts Regularization; (f) Input image.

regularization to prompts, our method provides flexible solu-
tions for different scenarios: adding dual prompt pool yields
comparable performance to parameter regularization at lower
complexity; incorporating parameter regularization can fur-
ther enhance performance if higher complexity is acceptable.

Methods
Training on Rain800-Rain100L

PSNR SSIM Degradation
on Rain800

Baseline 26.63 0.8583 0, 0

SI 20.42 0.5823 6.21, 0.2760
EWC 23.11 0.7840 3.52, 0.0743

Replay 23.20 0.7758 3.43, 0.0825
Deep generative 22.25 0.7462 4.38, 0.1121

PIGWM 23.98 0.8049 2.65, 0.0534
Ours 24.79 0.8382 1.84, 0.0201

Table 3: Comparison of quantitative results in terms of PSNR
and SSIM. The models are trained sequentially on task sequence
Rain800-Rain100L using continual learning methods and tested on
Rain800.

Methods
Training on Rain800-Rain100H
PSNR SSIM

Baseline(Rain800) 17.93 0.4868
PIGWM 24.13 0.7736

Ours 24.38 0.7847

Table 4: Comparison of quantitative results in terms of PSNR
and SSIM. The models are trained sequentially on task sequence
Rain800-Rain100H using continual learning methods and tested on
Rain100H. The baseline is trained on Rain800 solely.

4.4 Ablation Study
In this section, we conduct ablation studies to verify the im-
portance of each item in Eqn. (9). It can be seen clearly in
Table 5 and Fig. 4 that the dual prompt pools are the key to
overcoming catastrophic forgetting. Moreover, feature-level
prompts play a more critical role, and the parameter regu-
larization technique is able to further improve our model’s
performance.

Training on Rain800-Rain100H, Testing on Rain800
Image

Prompts
Feature
Prompts

Parameter
Reg.

Prompts
Reg. PSNR SSIM

✓ ✓ ✓ ✓ 24.39 0.8365
× ✓ ✓ ✓ 23.82 0.8262
✓ × ✓ ✓ 22.67 0.8189
✓ ✓ × ✓ 23.07 0.8311
✓ ✓ ✓ × 23.54 0.8215

Table 5: Ablation Study for Optimization Objective Function.

4.5 Extension to Multiple Datasets
In this section, we prove that our method shows superior per-
formance not only for two tasks but also for multiple tasks.
Namely, for n task sequences, we continually train task n af-
ter the model has been trained for the first n−1 tasks. Taking
three tasks as an example, the model is trained for the first two
tasks with our proposed scheme. Then, we continue to train
the model for Task 3 based on this model. Table 6 shows the
result of a model trained on Rain800-Rain100H-Rain100L
sequentially, to verify the effectiveness of our method. The
results clearly demonstrate the superiority of our method.

Method
Testing Set

Rain800 Rain100H Rain100L

SI 21.30/0.7152 16.53/0.5946 36.96/0.9800
Replay 22.77/0.7758 18.78/0.6861 32.12/0.9541

PIGWM 22.80/0.7564 17.44/0.6331 32.58/0.9561
DPL 24.44/0.8163 19.63/0.7282 31.93/0.9589

Reference 26.63/0.8583 28.49/0.8802 37.97/0.9825

Table 6: PSNR/SSIM results trained on sequential tasks Rain800-
Rain100H-Rain100L.

5 Conclusion
In this paper, we propose a novel continual learning scheme
for single image deraining, Dual Prompt Learning (DPL).
It learns to select and update compact prompts, i.e., small
learnable parameters, to instruct the transformer-based rain
removal model at both image and feature levels for con-
tinual rain removal. As regularization technique is further
adopted to penalize the intense changes of important param-
eters jointly with the learned prompts. Extensive experi-

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

7221



mentation on various rain streak benchmarks demonstrates
the effectiveness of our proposed scheme. Additionally, this
approach can be seamlessly integrated into the training of
lower-level task models, resulting in improved adaptability
and functionality in challenging environments.
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gory Slabaugh, and Tinne Tuytelaars. A continual learning
survey: Defying forgetting in classification tasks. IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence (TPAMI), 2021.

[Fu et al., 2017] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue
Huang, Xinghao Ding, and John Paisley. Removing rain
from single images via a deep detail network. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[Hu et al., 2021] Edward J. Hu, Yelong Shen, Phillip Wallis,
Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large
language models. arXiv:2106.09685, 2021.

[Kirkpatrick et al., 2017] James Kirkpatrick, Razvan Pas-
canu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago
Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceed-
ings of the National Academy of Sciences (PNAS), 2017.

[Lester et al., 2021] Brian Lester, Rami Al-Rfou, and Noah
Constant. The power of scale for parameter-efficient
prompt tuning. arXiv:2104.08691, 2021.

[Li and Hoiem, 2017] Zhizhong Li and Derek Hoiem.
Learning without forgetting. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence (TPAMI), 2017.

[Li and Liang, 2021] Xiang Lisa Li and Percy Liang. Prefix-
tuning: Optimizing continuous prompts for generation.
arXiv:2101.00190, 2021.

[Li et al., 2018a] Guanbin Li, Xiang He, Wei Zhang, Huiyou
Chang, Le Dong, and Liang Lin. Non-locally enhanced
encoder-decoder network for single image de-raining. In
Proceedings of the ACM International Conference on Mul-
timedia (ACM MM), 2018.

[Li et al., 2018b] Xia Li, Jianlong Wu, Zhouchen Lin, Hong
Liu, and Hongbin Zha. Recurrent squeeze-and-excitation
context aggregation net for single image deraining. In Pro-
ceedings of the European conference on computer vision
(ECCV), 2018.

[Liu et al., 2021] Pengfei Liu, Weizhe Yuan, Jinlan Fu,
Zhengbao Jiang, Hiroaki Hayashi, and Graham Neu-
big. Pre-train, prompt, and predict: A systematic sur-
vey of prompting methods in natural language processing.
arXiv:2107.13586, 2021.

[Mai et al., 2022] Zheda Mai, Ruiwen Li, Jihwan Jeong,
David Quispe, Hyunwoo Kim, and Scott Sanner. Online
continual learning in image classification: An empirical
survey. Neurocomputing, 2022.

[Mallya et al., 2018] Arun Mallya, Dillon Davis, and Svet-
lana Lazebnik. Piggyback: Adapting a single network to
multiple tasks by learning to mask weights. In Proceedings
of the European Conference on Computer Vision (ECCV),
2018.

[Pascanu and Bengio, 2013] Razvan Pascanu and Yoshua
Bengio. Revisiting natural gradient for deep networks.
arXiv:1301.3584, 2013.

[Pfeiffer et al., 2020] Jonas Pfeiffer, Aishwarya Kamath,
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